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Propagation of Gaussian beam in a media with saturable nonlinearity is analyzed by using variational approach. The 
semi-analytical variational method provides a considerable insight on the Gaussian beam dynamic. Furthermore the 
existence curve of such Gaussian solitons is studied numerically for which can not be evaluated exactly. Numerical results 
show that Gaussian function is good soliton profile in such media, and the Gaussian beam could propagate stably almost 
without changing their intensity shape when satisfied the existence curve, otherwise such beam propagate with a periodic or 
quasi-periodic manner. 
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1. Introduction 
 
It is known that propagation of beam in optical 

medium is an important problem in nonlinear optics. 
When the beam diffraction is balanced by the material 
nonlinearity, spatial solitons would form. Several materials 
are found to support solitons, such as photorefractive 
crystal, nonlocal media, and medium with saturable 
nonlinearity, etc. Different nonlinear equations are found 
to describe the solitons in nonlinear media. In particular, 
the saturable nonlinear Schrödinger equations play an 
important role in describing the solitons in nonlinear optics 
and the study of such equations have drawn considerable 
attention in recent years [1-18]. The soliton in several 
materials is described by the saturable nonlinear equation, 
such as non-centrosymmetric [1-6] and centro-symmetric 
[7-12] photorefractive media, nematic liquid crystals 
[13-14] etc. Even saturable square-root nonlinearity [15-16] 
is also possible.  

There are several methods to investigate the solutions 
of such type of equations, for example, numerical [1-2] 
and exact method [3] are provided. However, there are 
only a few nonlinear equations with especial nonlinearity 
that can be solved by exact method, for example, the great 
success of exact analytical techniques like the inverse 
scattering method in solving KDV equations and nonlinear 
Schrödinger equations with kerr nonlinearity. Then much 
effort is made to complement the exact analytical solution 
methods by approximate methods. The variational method, 
which has been found very useful in many investigations 
in nonlinear optics, is a direct method based on trial 
functions and Rayleigh-Ritz optimization. The 
semi-analytical variational method provides a considerable 
insight on the beam dynamic. And can obtain explicit 

results and a clear physical picture of the properties of the 
solution. Quite recently, propagation of two dimensional 
asymmetric Gaussian beam in a medium with saturable[17] 
and cubic-quintic[18] absorbing nonlinear media is 
analyzed by using the variational approach. Gaussian 
solitons in nonlocal media is also investigated by 
variational method [19]. Inspired by their work, we 
investigate the propagation of a Gaussian beam in a 
saturable media by variational approach. And obtain the 
existence curve of such Gaussian solitons by evaluating 
the potential numerically for which can not be evaluated 
exactly. Furthermore numerical results show that Gaussian 
function is a good profile in this saturable media. The 
Gaussian beam could propagate stably without changing 
their intensity shape when satisfy the existence curve, 
otherwise such beam propagate with a periodic or 
quasi-periodic manner.  

 
 
2. Theoretical model and variational analysis   
 

To start, let us assume that the light beam propagate 
along the Z axis and diffract in theX direction. Propagation 
of an optical beam in a saturable nonlinear media is 
governed by the following equation [7-12], 
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Where ( , )A X Z  is amplitude of optical field, γ  is 
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normalized nonlinear coefficient. 
2( , )I X Z A=  is the 

normalized intensity.  For small intensity, the above 
expression reduces to cubic-like nonlinearity; while for 
larger intensity, the refractive index saturates and 
approaches its maximum value.  

Eq. (1) could be resolved by numerical method. 
However, in this paper we analyze the solution properties 
by a semi-analytical method, i.e., variational method, for 
which could provide clear qualitative picture and good 
quantitative results for the beam dynamic. Equations (1) 
could be written as a variational problem, and the 
Lagrange density is 
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Since we consider the propagation of Gaussian beam 

in this media, a Gaussian tril function is introduced, i.e., 
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Where ( ),  ( ),  ( )a Z Z Zσ β are complex amplitude, 

beam width and curvature of the beam, respectively. 

The effective Lagrange L  is the average of L  

over X , i.e., 
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According to the variational principle, the following 
differential equations are obtained, 
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Above equations can be used to investigate the 
propagation of a Gaussian beam in saturable media. 

In order to get the relation between the amplitude, 

beam width, we let * (5) (6)a a× ± × , respectively. Then 

after some simplification, we can obtain the following set 
of equations, 
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Where expression 
2 2

2* *
1 1 2

2 exp( )
(1 )

Xa L a a L a a dX
I

γ σ
π

∞

−∞

−
∂ ∂ = ∂ ∂ =

+∫
                       (12) 

2 2 2
2

1 2 3

2 exp( ) 2
(1 )

X Xa L a dX
I

γ σσ
σπ

∞

−∞

−
∂ ∂ =

+∫           

(13) 
Then the following results are true, 
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In generality, equation (14) is equivalent to 

Newtonian second law in classical mechanics for the 
motion of a one-dimensional particle acted by an 
equivalent force  
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Similar equation like Eq. (14) can be integrated once to 
give a potential well, and then we can analyze the dynamic 
of beam width. However Eq. (14) can not be evaluated 
exactly, we should evaluate it numerically.  

If the force F  is equal to zero, a soliton would form, i.e., 
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. Under this condition, we can obtain  
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Eq. (15) gives a relation of γ  with amplitude a  when 

given the beam width σ . 
If nonlinear coefficient γ  is given, the amplitude 

a  could be obtained under certain beam width σ . Next 
we will investigate the dynamic propagation of Gaussian 
beam. Without loss of generality, we let 1σ = .Typical 
numerical results are shown in Fig.1. Fig.1 (a) shows the 
existence curve of this Gaussian solitons, i.e., the 
nonlinear coefficient γ  with relation to the amplitude a . 
Obviously amplitude bi-stability is observed in Fig.1; this 
means that for a given full width at half maximum (for 
example 1σ = ) there are two different values of 0a  for 
which bright solitary waves are to be found.  Furthermore 
a minimum of the existence curve show that nonlinear 
coefficient γ  should larger than this minimum value. It 
should be stressed that the intensity profile of the input 
beam is Gaussian function. And the existence curves of 
this “Gaussian solitons” for different beam width is like 
that of Fig.1. If the input beams are not Gaussian beams, 
the existence curve may be different. 

 

Fig. 1.Existence curve for Gaussian solitons in saturable media when 1σ = . 

   

Most important, when given the amplitude 0a , the 

nonlinear coefficient 2

1( )γ σ
σ

∝ . It is evident that with 

increasing soliton width, the bright solitary waves have a 
lower nonlinearity. This means larger width, lower 
nonlinearity. Vice verse. Typical results are shown in Fig. 
2. Fig.2 (a-c) show the dynamic propagation of Gaussian 

beam in this media when (a) 0 1 12.32, 1, 3a σ γ= = = ;  

(b) 0 2 22.32, 2, 1.5a σ γ= = = ; 

 

 (c) . 0 3 32.32, 2, 0.75a σ γ= = = , respectively.  We 

can see from Fig.2, the Gaussian beam propagate stably 
without changing their intensity shape for a distance about 
Z=100, and the “Gaussian solitons” is formed. Additional 
numerical simulations show that the Gaussian beam can 
propagate stably for a longer distance. All the figures in 
Fig.2 show that when the nonlinear coefficient 

2

1( )γ σ
σ

∝ , a Gaussian soliton would form. 
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(a)                                      (b) 

 

(c) 

Fig. 2 Dynamic propagation of Gaussian beam in saturable media when (a). 0 1 12.32, 1, 3a σ γ= = = ; 

b) . 0 2 22.32, 2, 1.5a σ γ= = = ; (c) . 0 3 32.32, 2, 0.75a σ γ= = = , respectively. Where the 

parameters of the input Gaussian beam satisfy the existence curve. 

 

If the parameters of the input Gaussian beam does not 
satisfy the existence curve, the Gaussian soliton can not 
form, and the beam will evolutes almost with a periodic or 
quasi-periodic manner, which can be seen from Fig. 3. 
Fig.3 (a-c) show the dynamic propagation of Gaussian 

beam in this media when (a) 0 1 16, 1, 3a σ γ= = = ; 

(b). 0 2 25, 2, 1.5a σ γ= = = ;  

(c). 0 3 32.32, 2, 1.5a σ γ= = = ,  

respectively. Obviously the Gaussian beam propagates 
almost with a periodic or quasi-periodic manner.  
Comparing Fig.3 (a) with Fig. 2(a), we see that the 
amplitude of input beam in Fig.3 (a) is larger, so the 
nonlinearity cannot balance the diffraction, and then the 
beam diffracts at the first propagation distance, then 
focusing; As a result such beam propagates with a periodic 
or quasi-periodic manner. Comparing Fig.3 (b) with Fig. 2 
(b), we can get the similar results. Finally, Comparing 
Fig.3 (c) with Fig. 2(c), we see that the nonlinearity in 
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Fig.3 (c) is larger, so the diffraction could be balanced by 
the larger nonlinearity, so the beam focuses at the first 

propagation distance, then diffracting, As a result the beam 
propagates with a periodic or quasi-periodic manner. 

 
(a)                                (b) 

 
(c) 

Fig. 3 Dynamic propagation of Gaussian beam in saturable media when 

(a) 0 1 16, 1, 3a σ γ= = = ; (b) . 0 2 25, 2, 1.5a σ γ= = = , (c). 0 3 32.32, 2, 1.5a σ γ= = = , 

respectively. Where the parameters of the input Gaussian beam does not satisfy the existence curve. 

 
Several issuers deserve discussion. Firstly, all the 

investigations confirm that Gaussian beam is a good 
approximation to spatial solitons in saturable media and 
could propagate stably when satisfy the existence curve of 
solitons. For the beam profile of Gaussian type is not the 
exact solution in such saturable media, there is some little 
vibration around the Gaussian solitons. Secondly, we find 
that the input Gaussian beam will vibrate when the 
parameter of Gaussian beam does not satisfy the existence 
curve, and the Gaussian beam propagates with a periodic 
or quasi-periodic manner. Thirdly, the semi-analytical 
variational method provides a considerable insight on the 
beam dynamic. And can obtain explicit results and a clear 
physical picture of the properties of the propagation 
Gaussian beams. 

3. Conclusions 
 
In conclusions, we have investigated the propagation 

of a Gaussian beam in saturable media by variational 
method, and obtained the existence curve of the Gaussian 
solitons by evaluating the potential numerically for which 
can not be evaluated exactly. Furthermore numerical 
results show that Gaussian function is a good profile for 
solitons in this saturable media. The Gaussian beam could 
propagate stably without changing their intensity shape 
when satisfy the existence curve. Otherwise such beam 
would propagate with a periodic or quasi-periodic manner. 
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